Как рассчитать параметры труб
Как рассчитать параметры труб
При строительстве и обустройстве дома трубы не всегда используются для транспортировки жидкостей или газов. Часто они выступают как строительный материал — для создания каркаса различных построек, опор для навесов и т.д. При определении параметров систем и сооружений необходимо высчитать разные характеристики ее составляющих. В данном случае сам процесс называют расчет трубы, а включает он в себя как измерения, так и вычисления.
Для чего нужны расчеты параметров труб
В современном строительстве используются не только стальные или оцинкованные трубы. Выбор уже довольно широк — ПВХ, полиэтилен (ПНД и ПВД), полипропилен, металлопластк, гофрированная нержавейка. Они хороши тем, что имеют не такую большую массу, как стальные аналоги. Тем не менее, при транспортировке полимерных изделий в больших объемах знать их массу желательно — чтобы понять, какая машина нужна. Вес металлических труб еще важнее — доставку считают по тоннажу. Так что этот параметр желательно контролировать.
То, что нельзя измерить, можно рассчитать
Знать площадь наружной поверхности трубы надо для закупки краски и теплоизоляционных материалов. Красят только стальные изделия, ведь они подвержены коррозии в отличие от полимерных. Вот и приходится защищать поверхность от воздействия агрессивных сред. Используют их чаще для строительства заборов, каркасов для хозпостроек (гаражей, сараев, беседок, бытовок), так что условия эксплуатации — тяжелы, защита необходима, потому все каркасы требуют окраски. Вот тут и потребуется площадь окрашиваемой поверхности — наружная площадь трубы.
При сооружении системы водоснабжения частного дома или дачи, трубы прокладывают от источника воды (колодца или скважины) до дома — под землей. И все равно, чтобы они не замерзли, требуется утепление. Рассчитать количество утеплителя можно зная площадь наружной поверхности трубопровода. Только в этом случае надо брать материал с солидным запасом — стыки должны перекрываться с солидным запасом.
Сечение трубы необходимо для определения пропускной способности — сможет ли данное изделие провести требуемое количество жидкости или газа. Этот же параметр часто нужен при выборе диаметра труб для отопления и водопровода, расчета производительности насоса и т.д.
Внутренний и наружный диаметр, толщина стенки, радиус
Трубы — специфический продукт. Они имеют внутренний и наружный диаметр, так как стенка у них толстая, ее толщина зависит от типа трубы и материала из которого она изготовлена. В технических характеристиках чаще указывают наружный диаметр и толщину стенки.
Внутренний и наружный диаметр трубы, толщина стенки
Имея эти два значения, легко высчитать внутренний диаметр — от наружного отнять удвоенную толщину стенки: d = D — 2*S. Если у вас наружный диаметр 32 мм, толщина стенки 3 мм, то внутренний диаметр будет: 32 мм — 2 * 3 мм = 26 мм.
Если же наоборот, имеется внутренний диаметр и толщина стенки, а нужен наружный — к имеющемуся значению добавляем удвоенную толщину стеки.
С радиусами (обозначаются буквой R) еще проще — это половина от диаметра: R = 1/2 D. Например, найдем радиус трубы диаметром 32 мм. Просто 32 делим на два, получаем 16 мм.
Измерения штангенциркулем более точные
Что делать, если технических данных трубы нет? Измерять. Если особая точность не нужна, подойдет и обычная линейка, для более точных измерений лучше использовать штангенциркуль.
Расчет площади поверхности трубы
Труба представляет собой очень длинный цилиндр, и площадь поверхность трубы рассчитывается как площадь цилиндра. Для вычислений потребуется радиус (внутренний или наружный — зависит от того, какую поверхность вам надо рассчитать) и длина отрезка, который вам необходим.
Формула расчета боковой поверхности трубы
Чтобы найти боковую площадь цилиндра, перемножаем радиус и длину, полученное значение умножаем на два, а потом — на число «Пи», получаем искомую величину. При желании можно рассчитать поверхность одного метра, ее потом можно умножать на нужную длину.
Для примера рассчитаем наружную поверхность куска трубы длиной 5 метров, с диаметром 12 см. Для начала высчитаем диаметр: делим диаметр на 2, получаем 6 см. Теперь все величины надо привести к одним единицам измерения. Так как площадь считается в квадратных метрах, то сантиметры переводим в метры. 6 см = 0,06 м. Дальше подставляем все в формулу: S = 2 * 3,14 * 0,06 * 5 = 1,884 м2. Если округлить, получится 1,9 м2.
Расчет веса
С расчетом веса трубы все просто: надо знать, сколько весит погонный метр, затем эту величину умножить на длину в метрах. Вес круглых стальных труб есть в справочниках, так как этот вид металлопроката стандартизован. Масса одного погонного метра зависит от диаметра и толщины стенки. Один момент: стандартный вес дан для стали плотностью 7,85 г/см2 — это тот вид, который рекомендован ГОСТом.
Таблица веса круглых стальных труб
В таблице Д — наружный диаметр, условный проход — внутренний диаметр, И еще один важный момент: указана масса обычных стального проката, оцинкованные на 3% тяжелее.
Таблица веса профилированной трубы квадратного сечения
Как высчитать площадь поперечного сечения
Формула нахождения площади сечения круглой трубы
Если труба круглая, площадь сечения считать надо по формуле площади круга: S = π*R 2 . Где R — радиус (внутренний), π — 3,14. Итого, надо возвести радиус в квадрат и умножить его на 3,14.
Например, площадь сечения трубы диаметром 90 мм. Находим радиус — 90 мм / 2 = 45 мм. В сантиметрах это 4,5 см. Возводим в квадрат: 4,5 * 4,5 = 2,025 см 2 , подставляем в формулу S = 2 * 20,25 см 2 = 40,5 см 2 .
Площадь сечения профилированной трубы считается по формуле площади прямоугольника: S = a * b, где a и b — длины сторон прямоугольника. Если считать сечение профиля 40 х 50 мм, получим S = 40 мм * 50 мм = 2000 мм 2 или 20 см 2 или 0,002 м 2 .
Как рассчитать объем воды в трубопроводе
При организации системы отопления бывает нужен такой параметр, как объем воды, которая поместится в трубе. Это необходимо при расчете количества теплоносителя в системе. Для данного случая нужна формула объема цилиндра.
Формула расчета объема воды в трубе
Тут есть два пути: сначала высчитать площадь сечения (описано выше) и ее умножить на длину трубопровода. Если считать все по формуле, нужен будет внутренний радиус и общая длинна трубопровода. Рассчитаем сколько воды поместится в системе из 32 миллиметровых труб длиной 30 метров.
Сначала переведем миллиметры в метры: 32 мм = 0,032 м, находим радиус (делим пополам) — 0,016 м. Подставляем в формулу V = 3,14 * 0,016 2 * 30 м = 0,0241 м 3 . Получилось = чуть больше двух сотых кубометра. Но мы привыкли объем системы измерять литрами. Чтобы кубометры перевести в литры, надо умножить полученную цифру на 1000. Получается 24,1 литра.
Как провести расчет различных параметров труб: базовые формулы и примеры вычислений
Водопроводные, отопительные, канализационные, дымоходные, обсадные, медные, стальные, пластиковые, металлопластиковые, узкие, широкие — трубы разного назначения из различных материалов окружают нас повсюду. Необходимость проложить новые коммуникации или заменить старые возникает и во время строительства дома, и при текущем ремонте. Составляя проект предстоящих работ, не помешает вооружиться калькулятором, чтобы провести расчет веса трубы, ее массы, объема и прочих параметров.
Зачем нужно рассчитывать параметры труб?
Предварительный расчет параметров труб необходим во многих случаях. Например, для правильной коммуникации трубопровода с другими элементами системы. Проектировщики и монтажники при работе с трубами используют такие показатели, как:
- проходимость трубопровода;
- потери тепла;
- количество утеплителя;
- количество материала для защиты от коррозии;
- шероховатость внутренней поверхности трубы и т. п.
В результате можно определить точное количество труб, необходимых для конкретной системы, а также их оптимальные характеристики. Правильные расчеты избавляют от избыточных расходов на приобретение и транспортировку материала, позволяют веществам, которые находятся в трубопроводе, перемещаться с заданной скоростью для максимально эффективного использования системы.
В этой таблице приведены некоторые полезные сведения о характеристиках труб разного вида, которые помогут выбрать подходящие конструкции, необходимые для создания трубопровода
В отопительных системах диаметр труб существенно зависит от допустимой скорости. Пример такого рода расчетов представлен на видео:
Расчеты различных параметров трубы
Для того, чтобы правильно рассчитать основные параметры труб, следует определить следующие показатели:
- материал, из которого изготовлена труба;
- тип сечения трубы;
- внутренний и внешний диаметр;
- толщина стенок;
- длина трубы и т. п.
Часть данных можно получить, просто измерив конструкцию. Множество полезных сведений содержится в сертификационных документах, а также в различных справочниках и ГОСТах.
Как узнать диаметр и объем трубы?
Некоторые формулы расчетов знакомы каждому школьнику. Например, если нужно уточнить диаметр конкретной трубы, следует измерить ее окружность. Для этого можно воспользоваться сантиметровой лентой, которой пользуются швеи. Или же следует обернуть трубу другой подходящей лентой, а затем измерить полученный отрезок с помощью линейки.
Далее используем формулу длины окружности:
- L — длина окружности круга;
- π — постоянное число «пи», равное примерно 3,14;
- D — диаметр окружности круга.
Достаточно проделать несложное преобразование, чтобы вычислить с помощью этой формулы внешний диаметр трубы:
Измерив толщину стенок трубы, легко рассчитать также внутренний диаметр круга. Для этого от значения внешнего диаметра трубы следует отнять удвоенное значение толщины стенок трубы.
Расчет сечения трубы
Чтобы рассчитать сечение трубы, следует вычислить площадь круга. При этом учитывается разница между наружным диаметром трубы и толщиной ее стенок, проще говоря — внутренний диаметр трубы.
На этом рисунке наглядно представлены такие показатели как наружный диаметр трубы и толщина ее стенки. Разница между наружным диаметром и толщиной позволяет вычислить внутренний диаметр трубы
Формула площади круга выглядит так:
- S — площадь круга;
- π — число «пи»;
- R — радиус круга, рассчитывается как половина диаметра.
Если используются сведения о наружном диаметре и толщине стенок трубы, то формула может выглядеть следующим образом:
- S — площадь сечения;
- π — число «пи»;
- D — наружный диаметр трубы;
- T — толщина стенок трубы.
Допустим, имеется труба, внешний диаметр которой составляет 1 метр, а толщина стенок равна 10 мм. Для начала следует согласовать все единицы измерения. Толщина стенок составит 0,01 метра. Согласно приведенной выше формуле рассчитаем сечение такой трубы:
Таким образом, сечение трубы с указанными параметрами будет равно 0,75 кв. м.
Как известно, точность вычислений с числом «пи» зависит от количества знаков после запятой, которые используются при применении этой константы. Однако в строительстве обычно нет нужды в сверхточных расчетах, и число «пи» принимается равным 3,14. Конечный результат также имеет смысл округлять до двух знаков после запятой.
Как рассчитать объем трубы?
На этой схеме наглядно отражено использование таких данных как радиус сечения трубы и ее длина для определения объема трубы
Выполнить расчет объема конкретного отрезка трубы также не сложно. Для этого нужно сначала найти площадь окружности трубы по ее внешнему диаметру по формуле, приведенной выше:
В этом случае D — это внешний диаметр трубы, а R – внешний радиус, т. е. половина диаметра. После этого полученное значение нужно умножить на длину отрезка трубы, получив объем, который выражается в кубических метрах. Формула расчета объема трубы может выглядеть так:
- V — объем трубы, куб. м.
- S — площадь внешнего сечения, кв.м.;
- H — длина отрезка трубы, м.
Допустим, имеется труба с внешним диаметром 50 см и длиной 2 метра. Сначала следует согласовать все единицы измерения. D=50 см=0,5 м. Подставим это значение в формулу площади круга:
Теперь можно вычислить объем:
Все эти расчеты можно легко проделать с помощью обычного калькулятора, однако гораздо более удобно использовать соответствующую вычислительную машину, осуществляющую расчёт в режиме онлайн: https://calcsoft.ru/obyom-cilindra.
Калькулятор проводит вычисления в зависимости от начальных данных: р адиус основания и высота, диаметр основания и высота или площадь основания и высота.
Как рассчитать массу трубы?
Информация о весе конкретного количества труб необходима, чтобы спрогнозировать расходы на их транспортировку. Если используется большая конструкция, ее вес не помешает соотнести с несущей способностью фундамента знания.
В этой таблице указаны справочные данные о весе стальных труб различного вида с учетом их размеров и особенностей технологии производства
Ученикам средних классов хорошо известно, что найти массу объекта можно путем умножения его объема на плотность вещества, из которого этот объект состоит. Строители избавлены от утомительных вычислений массы конкретного отрезка трубы, поскольку в различных строительных справочниках содержится информация о весе погонного метра самых различных видов труб. Проще всего выполнить расчет массы трубы с помощью соответствующих ГОСТов, используя информацию о:
- материале, из которого изготовлена труба;
- ее внешнем диаметре;
- толщине стенок;
- внутреннем диаметре и т. п.
Выяснив вес одного погонного метра трубы, следует умножить полученное значение на общее количество погонных метров. Сложность задачи соответствует уровню четвертого-пятого класса общеобразовательной школы.
Для выяснения веса труб предлагаем вам воспользоваться нашим онлайн-калькулятором. В соответствующие поля вводят необходимые сведения, после чего программа выдает значение веса заданного количества труб.
Как определить площадь внешней поверхности трубы?
При монтаже самых различных систем может потребоваться утепление трубопровода. Чтобы максимально точно определить необходимое количество теплоизолирующего материала или другого необходимого покрытия (антикоррозионного, гидроизоляционного и т.п.), рекомендуется вычислить площадь внешней поверхности трубы.
Чтобы правильно рассчитать количество материала, необходимого для утепления трубы, следует вычислить площадь ее наружной поверхности. Для этого длину окружности наружного сечения следует умножить на длину трубы
Любую трубу круглого сечения можно мысленно представить как прямоугольник, который свернули в трубочку. Площадь прямоугольника определяется как произведение его длины и ширины. В случае с трубой длине прямоугольника будет соответствовать длина трубы, а его ширине — длина ее внешней окружности.
Формула длины окружности уже упоминалась в начале, она выглядит как L=∏D. Обозначим длину отрезка трубы как H. Тогда площадь наружной поверхности трубы будет равна:
- St — площадь внешней поверхности трубы, кв.м.;
- π — постоянное число «пи», равное 3,14;
- D — внешний диаметр трубы, м;
- H — длина трубы, м.
Например, если имеется труба диаметром 30 см и длиной 5 метров, площадь ее поверхности будет равна:
Используя приведенные выше формулы, можно без труда сделать расчет объема внутреннего пространства трубы и площадь ее внутренней поверхности. Для этого в расчетах достаточно заменить значение внешнего диаметра трубы на величину ее внутреннего диаметра.
А если сечение трубы не круглое?
Все формулы и расчеты, описанные ранее, рассматривают исключительно трубы с круглым сечением. Действительно, в современном строительстве чаще всего используются именно такие конструкции. Однако существуют трубопроводы с:
- прямоугольным;
- овальным;
- трапециевидным сечением и т. п.
Для расчета таких нестандартных труб рекомендуется использовать ряд простых формул. Так, площадь квадратного или прямоугольного сечения определяется как произведение длины и ширины. Умножив площадь на длину отрезка трубы, можно вычислить объем трубы. Чтобы найти площадь поверхности трубы прямоугольного сечения, следует перемножить длину отрезка трубы и периметр сечения. Периметр, как известно, это сумма всех сторон прямоугольника.
Трубы с прямоугольным или трапециевидным сечением чаще всего применяются при создании дымоходов и канализационных систем. Для расчета основных параметров таких труб используют несколько простых формул
Периметр трапеции также вычисляется как сумма всех ее сторон. Умножаем эти данные на длину отрезка трубы и получаем площадь поверхности трубы. Чтобы рассчитать объем трубы с трапециевидным сечением, нужно сначала найти площадь трапеции. Она рассчитывается как произведение полусуммы ее оснований и высоты:
- А и В — длина оснований трапеции, т. е. ее параллельных сторон;
- Н — высота трапеции, т. е. перпендикуляр, проведенный от одного основания к другому.
Умножив площадь трапециевидного сечения на длину отрезка трубы, получаем ее объем.
Чтобы рассчитать параметры трубы с овальным сечением, действуют примерно так же. Вычисляют длину окружности овала, а также его площадь. Умножив длину окружности на длину отрезка трубы, получим поверхности трубы. Произведение площади овального сечения и длины отрезка трубы даст значение объема трубы.
Овал имеет две оси: большую и малую. Длина окружности овала (или эллипса) рассчитывается как произведение числа «пи» на сумму длин его полуосей:
- ∏ — постоянное число «пи», равное 3,14;
- А и В — длина полуосей овала.
Площадь овала рассчитывается как произведение его полуосей и числа «пи»:
Чтобы избежать сложных расчетов, можно воспользоваться многочисленными он-лайн калькуляторами, которые позволяют рассчитать параметры труб самых разных конфигураций.
Расчет пропускной способности трубопровода по диаметру и давлению
Пропускная способность трубы в гидравлике — объем или масса проходящего за единицу времени вещества через ее сечение. Этот показатель является важнейшим при расчете и проектировании трубопроводов, транспортирующих различные жидкости и газы. Правильно подобранные параметры позволяют системе функционировать без перегрузок, а также снизить расходы, связанные с ее устройством или модернизацией.
Для чего определяется пропускная способность?
При расчете водопровода стоит задача определить оптимальный диаметр трубы для обеспечения нормативного потребления воды.
Если сечение слишком мало, это приводит к недостаточному напору в трубах даже при большом давлении, в результате:
- насосное оборудование быстрее изнашивается,
- чаще происходят аварии на линии,
- увеличивается расход энергии.
Для ремонта систем требуются дополнительные траты, что повышает стоимость эксплуатации.
В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту. Часто трубопроводы сравнивают с электропроводкой, только по трубам бежит вода, а по проводам — электрический ток.
С чего начать?
Отправная точка для расчета системы — определение нормативного расхода воды в зависимости от количества приборов и одновременно включаемых водоразборных точек. Базовые данные указаны в СНиП 2.04.01-85*, для потребляющего воду оборудования технические характеристики можно узнать из паспорта и суммировать с нормативными.
Зная, сколько потребуется воды на различные нужды, подбираются все элементы системы:
Методы определения пропускной способности
Расчеты ведутся различными методами:
- По формулам гидравлики. Это достаточно сложный способ, требующий теоретических знаний.
- По готовым таблицам. Необходимые параметры уже просчитаны и занесены в удобную для пользователей форму.
- С помощью онлайн калькулятора. Доступный и быстрый способ найти нужные характеристики. Достаточно записать свои данные в окнах программы, и результат будет готов почти мгновенно.
В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту.
Закон Торричелли
В формуле итальянского математика и физика Торричелли используется закон сохранения энергии для идеальных жидкостей и газов.
Ученый получил соотношение, связывающее скорость молекулы и высоту столба жидкости (напор):
U=√2gH, где U— скорость движения молекулы вещества, g— ускорение свободного падения, H — напор.
Зная скорость жидкости и нормативный расход, можно определить необходимую площадь S сечения трубы:
S=Q /V, где Q — расход, определенный по СНиП 2.04.01-85*.
Площадь круга связана с диаметром соотношениемS=pD²/4, откуда:
D=2√(S/p)=2√(Q/(Up)), где p — 3,14.
Таблица пропускной способности труб для жидкостей, газа, водяного пара
Гораздо проще и быстрее использовать таблицы определения пропускной способности трубы в зависимости от диаметра и давления воды, газа, водяного пара. Они содержат уже готовую информацию в очень доступном виде:
Например, нужно определить пропускную способность трубы Æ20 мм при давлении 3 бар (0,3 МПа или 3 атм.). В левом столбце находим 3 бар, на самой верхней строчке указаны диаметры. При пересечении своих данных получаем значение искомого параметра для воды — 9,93 м³/ч.
Если по расчетам нормативного расхода этого достаточно, труба сечением 20 мм полностью удовлетворяет условиям. Если требуется большая проходимость, нужно найти значение для диаметра 32 мм и т.д., пока не будет найден наиболее близкий показатель.
Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)
Таблицы Шевелева — советского ученого в области гидравлики — были разработаны для стальных, чугунных (новых и неновых), асбестоцементных, железобетонных, пластиковых и стеклянных труб. В расчетах учитывались шероховатость различных материалов, вязкость жидкости, трение и даже возраст труб, поскольку через несколько лет эксплуатации коммуникаций наблюдается выпадение осадка и уменьшение внутреннего диаметра.
Таблица пропускной способности труб в зависимости от давления теплоносителя
С увеличением давления растет и пропускная способность системы, но по нелинейному закону. По данной таблице можно найти показатели для различных значений напора труб самых востребованных диаметров:
В левой колонке указано давление, в строках — пропускная способность для разных сечений. Например, при диаметре трубы 20 мм и напоре 120 Па/1,2 бар максимальный расход воды через трубу по таблице составляет 472 кг (литра) в час. При этом скорость жидкости менее 15 м/с.
Таблица пропускной способности труб при разной температуре теплоносителя
При расчете тепловых системпропускная способность определяется в т/час или Гкал/час при различных температурных графиках с учетом удельной потери на трение. Для расчета используются рекомендации СП 60.13330.2012, СНиП 41-01-2003.
Например, труба с условным диаметром 50 мм при потере давления 5 кгс/м² обеспечивает проходимость 2,45 т/ч и 0,06 Гкал при температурах 95-70°С. Для температурных графиков 130-70 и 150-70 эти значения 0,15 Гкал и 0,2 Гкал соответственно.
При неизменном расходе теплоносителя с ростом температуры увеличивается количество выделяемой теплоты.
Таблицы пропускной способности напорных канализационных систем
Напорные сети организуются, если приборы расположены ниже уровня колодцев или коллекторов и требуется перекачка стоков на определенную высоту. Гидравлический расчет проводится по СП 31.13330.2012.
В отличие от безнапорных систем жидкость транспортируется полным сечением. В расчетах используются таблицы Шевелева для напорных трубопроводов и аналогичная методика. Объем стоков берется равным потреблению воды на водоснабжение.
Таблицы пропускной способности безнапорных труб канализации
В самотечных трубопроводах, устроенных с уклоном, стоки движутся благодаря силе тяжести. Сечение полностью не заполняется. При гидравлическом расчете используют таблицы Лукиных для безнапорной канализации.
Диаметр трубы определяется исходя из расчетного объема сточных вод, угла уклона и нормативного наполнения. Учитывается также материал для изготовления элементов.
Пример таблицы для пластиковой трубы сечением 40, 50 и 110 мм:
Для определения необходимого минимального диаметра задается расход стоков q, уклон i, наполнение h/D от 0,3 до 0,8 (в ливневой канализации допускается h/D=1). Например, нормативный расход 1,9 л/с, уклон 0,03, заполнение 0,3. Данным условиям удовлетворяет пластиковая труба Æ110 мм, скорость стекания 0,884 м/с, что соответствует нормативу.
Таблица пропускных способностей газовых труб в зависимости от давления
При выборе нужного оборудования для ГРС руководствуются прежде всего производительностью, зависящей от пропускной способности входных и выходных трубопроводов. Нормативы ограничивают скорость потока газа величиной 25м/с.
Для расчета применяется методика, описанная в Справочнике по проектированию магистральных водопроводов (ред. А.К. Дерцакян), а также таблица:
Пропускная способность определяется при заданном давлении (в левой колонке) и диаметре в вертикальных столбцах.
Методы расчета пропускной способности трубопроводов
Гидравлические расчеты проводятся с целью подбора элементов системы с оптимальными характеристиками для обеспечения бесперебойной работы, уменьшения эксплуатационных расходов и снижения износа оборудования.
Гидравлический расчет трубопровода
Расчеты ведутся с помощью таблиц Шевелева по следующему алгоритму:
- Задается нужный расход Q и оптимальная скорость среды на каждом участке.
- Подбирается диаметр трубы, определяются потери напора по длине.
- Процедура повторяется для всех участков.
- Находится удельное значение потери давления на 1 пог. м.
- Суммируются все остальные потери от всасывания, местного сопротивления и т.д. Полученное значение должно быть меньше или равно мощности насоса.
- Исходя из технических характеристик оборудования определяется расход Qнасоса.
- Сравниваются Q и Qнасоса. При приблизительном равенстве значений насос подобран правильно. Если нет, нужно задать новые параметры и посчитать заново.
Расчет пропускной способности канализационных труб
Задается диаметр и угол наклона, при котором сточные воды стекают произвольно, а система постоянно самоочищается (от 0,005 до 0,035 в зависимости от сечения):
Степень наполнения трубы по нормативу 0,6-0,8 и также зависит от диаметра:
По таблицам Лукиных уточняется, соответствует ли выбранный диаметр заданным параметрам. Если есть отклонения, сечение нужно изменить в большую/меньшую сторону. Для более точных расчетов используются графики, формулы и поправочные коэффициенты.
Расчет пропускной способности газопроводов
В соответствии с параметрами проектируемой сети задаются диаметры труб на входе и выходе в ГРС. Затем, сравнивая значения по таблицам, находят такое соотношение, при котором условия максимально соблюдены.
Как рассчитать параметры дымохода
Главные характеристики, которые определяются в ходе расчетов, — длина трубы дымохода и ее рабочее сечение. При неправильном подборе параметров токсичные вещества не удаляются из камеры сгорания и проникают в помещение.
При проектировании используются нормативы СП 7.13130.2013 и СНиП III-Г.11-62. Хотя последний регламент считается недействующим, там содержатся рекомендации, касающиеся именно дымоходов.
Сложные промышленные устройства рассчитываются в профессиональных бюро, для домашних печей применяется более простая методика.
- Задается скорость движения дыма U=2 м/с.
- За час в топке сгорает примерно В=6 кг дров влажностью 20-25%.
- Температура разогретого дыма T=140°.
Объем исходящего дыма определяется по формуле:
Vгаз = (В х Vтоплx (1+Т/273))/3600, м3/с , где Vтопл — объем воздуха, требуемый для сжигания 1 кг дров. В данном случае это 10 м³, для бурого угла 12 м³, для каменного 17 м³.
Зная объем исходящего газа и его скорость, можно найти площадь сечения трубы дымохода:
Диаметр определяется по геометрической формуле:
D=2√(S/p)=2√(0,0126/3,14)=0,126 м = 126 мм.
Ближайший диаметр трубы с округлением в большую сторону — 150 мм.
Главные характеристики, которые определяются в ходе расчетов, — длина трубы дымохода и ее рабочее сечение. При неправильном подборе параметров токсичные вещества не удаляются из камеры сгорания и проникают в помещение.
Длина дымохода для обеспечения нормальной тяги подбирается по СП 7.13130.2013, где нормируются высота от оголовка до колосниковой решетки печи, конька крыши, а также расстояние до окружающих крупных объектов.
Онлайн калькуляторы
Программы, помогающие определить параметры трубопровода, — большое подспорье для тех, кто мало знаком с гидравликой. Они созданы на базе действующих нормативов и теоретических формул.
Крупные объекты проектируются специализированными организациями, но для расчетов домашних сетей онлайн-калькуляторы могут применяться вполне уверенно. Если есть какие-либо сомнения, за консультацией лучше обратиться к профессионалам.
Заключение
Пропускная способность трубы — важнейшая характеристика, от которой зависит работа всего трубопровода. Для расчетов применяются различные методики с использованием формул, таблиц или программ. Если нет уверенности в собственных силах, обратитесь к специалистам.
Дополнительная информация по теме:
Как выполняется расчет диаметра трубопровода – теория и практика из опыта
Нередко домашние умельцы принимают решение проложить собственноручно систему теплоснабжения или обустроить водопроводную магистраль в частном домовладении. Для этого непременно выполняют расчет диаметра трубопровода, поскольку от этой величины напрямую зависит пропускная способность конструкции и давление в трубопроводе.
Что представляет собой диаметр труб
Этот параметр представляет собой величину отрезка, который проводят через две противоположные точки окружности сечения изделия и ее центр. Диаметр трубной продукции относится к важному размеру трубопроводов разного назначения.
Когда выполняется определение диаметра трубопровода, учитывают ряд основных размеров, среди которых:
- Внутренний параметр системы. Он считается немаловажной характеристикой для всех элементов водопроводных систем и отопительных конструкций, а также для фасонных частей и фитингов.
- Ду – диаметр, означающий условный проход. Он представляет собой номинальный параметр внутреннего просвета конструкции в миллиметрах. Если значение получается дробным, его округляют для целого числа.
- Дн – стандартизированное значение диаметра. Этот показатель применяется для трубопроводных систем с целью характеристики присоединяемых арматурный элементов.
- Внешний размер продукции.
- Толщина стенки изделия.
Несмотря на то, что многим покупателям трубной продукции известно, что такое труба и элементы магистрали, правильно рассчитать диаметр будущей конструкции умеют единицы. К примеру, продавцы, когда называют размер товара, предоставляют информацию в дюймах. В настоящее время имеются специальные таблицы, которые помогают переводить параметры труб в миллиметры и сантиметры.
Правила расчета диаметра
Расчет диаметра магистрали предполагает определение не только величины отрезка, проходящего через центр сечения изделия и соединяющего точки, находящиеся на его окружности. Нужно знать, как рассчитать давление в трубопроводе, с учетом типа среды, перемещаемой по нему, и протяженность конструкции (прочитайте также: “Почему возникает потеря давления в трубопроводе и как этого можно избежать”).
В результате получается, что при тех же самых используемых деталях параметры для отопительных и водопроводных систем разнятся. Непрофессионалу выполнить расчеты для разных видов трубопроводов будет достаточно непросто.
Поможет правильно вычислить размеры необходимых элементов, которые используются при монтаже конструкций, объем расхода жидкости или другого вида вещества. Читайте также: “Как рассчитать расход воды по диаметру трубы – теория и практика”.
Например, можно произвести расчет диаметра трубы по расходу воды из скважины на приусадебном участке, если иметь информацию о максимальной потребности в ней в загородном домовладении. Это требуется для оптимизации проведения буровых работ, поскольку нужно определить минимальную величину обсадной конструкции для водопроводной сети.
Если в доме планируется пользоваться одним санузлом, а также нужна будет вода для кухни, стиральной машинки, для полива приусадебного участка, тогда в среднем примерная производительность водопроводной сети в час будет составлять 3 кубометра.
Как правило, при такой степени нагрузки используют трехдюймовые насосы, которые способны подавать в водопроводную или отопительную магистрали определенные объемы жидкости.
У насоса диаметр 75 сантиметров. Прибор не должен прикасаться к стенам обсадной конструкции, а это означает, что при проведении расчетов следует учитывать наличие пространства между насосом и ее стенками. Поскольку основной диаметр можно узнать на основании наружного периметра, к промежуточному результату следует непременно добавить толщину стен устройства. И только суммировав все значения, получится определить точные параметры.
Отопительные трубопроводные конструкции
Чтобы узнать диаметр трубопроводов для отопительных систем, применяется абсолютно другой подход. В этом случае основным определяющим параметром является тепловая нагрузка, оказываемая на каждый из участков теплоснабжающей системы. Когда в помещении имеются потолки стандартной высоты, тогда средний расход тепловой мощности на один «квадрат» площади должен составлять около 100 Вт.
Все эти значения известны специалистам. Для домашних умельцев имеются специальные таблицы, в которых отражено соотношение для систем любого назначения и перемещаемых сред.
Проведение расчета для напорных трубопроводов, применяемых в водопроводных и отопительных магистралях, необходимо по ряду причин:
- чтобы узнать пропускную способность отдельных элементов и всей системы в целом;
- для снижения начальной величины напора на разных участках коммуникаций и всей конструкции;
- для определения оптимального диаметра системы при точных значениях пропускной способности и уменьшении напора.
Когда рассчитывают необходимый расход транспортируемой среды в трубопроводе, принимают во внимание пропорциональное соотношение между его пропускной способностью и величиной сечения трубы (прочитайте: “Как посчитать пропускную способность трубы для разных систем – примеры и правила”).
Проведение гидравлических расчетов
Выполнение таких вычислений для труб является необходимым этапом при осуществлении планирования и проектирования систем отопления или водоснабжения для промпредприятия, частного домовладения или населенного пункта. Читайте также: “Как выполнить расчет диаметра трубы для отопления правильно – теория и практика”.
Для правильного проведения гидравлических расчетов следует учитывать ряд нюансов:
- минимальный объем веществ, требуемый для каждого конкретного пользователя;
- место нахождения источника транспортируемой среды и конечного потребителя;
- имеющиеся в распоряжении схемы проектируемой конструкции водо- и теплоснабжения с указанием используемых элементов и материалов их изготовления;
- величину максимального давления в магистрали;
- протяженность всей системы и виды сопротивлений в различных местах трубопровода;
- таблицы с указанием соотношения материалов, единиц измерений и прочего;
- эквивалентный материал, из которого сделана внутренняя поверхность трубной продукции.
Среди задач, которым требуются сложнейшие гидравлические расчеты, значатся такие:
- протяженность участка магистрали, который обеспечивает доставку веществ в каждый конечный пункт;
- величина давления в конструкции;
- определение расхода в водопроводных или теплоснабжающих системах.
Существует простая формула расчета диаметра трубы, воспользоваться которой может каждый владелец недвижимости, без участия профессионалов:
d – внутренний диаметр;
Q – корень квадратный;
W – тепловые потоки, выраженные в кВт;
Z – скорость теплоносителей в секундах/метрах;
nG – разности температур среды в градусах.
Остается только подставить индивидуальные данные при проектировании простого варианта магистрали. Другие примеры гидравлического расчета трубопровода можно найти в специальной литературе.
Но следует отметить, что проектирование больших по протяженности и сложных отопительных или водоснабжающих систем требует наличия профессиональных знаний, поэтому расчеты лучше доверить специалистам. Только они смогут грамотно и правильно рассчитать параметры трубопровода, который способен будет прослужить без серьезных проблем на протяжении длительного периода.
Квалифицированные инженеры при проектировании используют специальные программы, которые по известным параметрам подсчитывают и выдают окончательные результаты.
Как рассчитать параметры труб
В этой статье я расскажу вам о том, как профессионально посчитать диаметр трубы. Будут указаны полезные формулы. Вы узнаете какой диаметр трубы вам нужен для водопроводных труб. Также очень важно не путать, расчет подбора диаметра трубы для водоснабжения, от расчета для отопления. Так как для отопления бывает достаточно низкого потока движения воды. Формула расчета диаметра труб кардинально отличаются, так как для водоснабжения необходимы большие скорости потока воды.
О том, как рассчитать диаметр трубы для отопления описано тут: Расчет диаметра трубы для отопления
Что касается таблиц для расчета диаметра трубы, то об этом будет рассказано в других статьях. Скажу лишь то, что данная статья вам поможет найти диаметр труб без таблиц, по специальным формулам. А таблицы придуманы просто, упростить процесс вычисления. К тому же в этой статье Вы поймете, из чего складывается весь результат необходимого диаметра.
Чтобы получить расчет диаметра трубы для водоснабжения, необходимо иметь готовые цифры:
– Расход потребления воды. – И потери напора от точки А до точки Б, пути трубопровода до точки потребления. |
Что касается расхода потребления воды , то тут примерно есть приблизительно готовый цифровой стандарт. Возьмем к примеру смеситель в ванной. Я опытным путем проверил, что для комфортного потока воды на выходе примерно равно: 0,25 литров в секунду. Эту величину и возьмем для стандарта по подбору диаметра для водного потока.
Есть еще одна не маловажная цифра. В квартирах это обычно стандарт. У нас в стояках для водоснабжения примерно стоит давление напора: Около 1,0 до 6,0 Атмосфер. В среднем это 1,5-3,0 атмосфер. Это зависит от этажности многоквартирного дома. В многоэтажных домах свыше 20 этажей, стояки могут быть разделены по этажности, чтобы не перегружать нижние этажи.
А теперь давайте приступим к алгоритму расчета необходимого диаметра трубы для водоснабжения. В этом алгоритме есть неприятная особенность, это то, что нужно делать расчет циклично подставляя в формулу диаметр и проверяя результат. Так как в формуле потерь напора существует квадратичная особенность и в зависимости от диаметра трубы резко изменяется результат потерь напора. Я думаю, больше трех циклов нам не придется делать. Также еще зависит от материала трубопровода. И так приступим!
|
Вот некоторые формулы, которые помогут найти скорость потока:
S-Площадь сечения м 2 π-3,14-константа – отношение длины окружности к ее диаметру. r-Радиус окружности, равный половине диаметра Q-расход воды м 3 /с D-Внутренний диаметр трубы |
0,25л/с=0,00025м 3 /с
V=(4*Q)/(π*D 2 )=(4*0,00025)/π*0,012 2 =2,212 м/с
Далее находим число Рейнольдса по формуле:
ν=1,16*10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.
Δэ=0,005мм=0,000005м. Взято из таблици, для металлопластиковой трубы.
Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.
У меня подпадает в первую область и я принимаю для расчета формулу Блазиуса.
λ=0,3164/Re 0,25 =0,3164/22882 0,25 =0,0257
Далее используем формулу для нахождения потерь напора:
h-потеря напора сдесь она измеряется в метрах. λ-коеффициент гидравлического трения. L-длина трубопровода измеряется в метрах. D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2 |
h=λ*(L*V 2 )/(D*2*g)=0,0257*(10*2,212 2 )/(0,012*2*9,81)=5,341 м.
И так: На входе у нас 2 атмосферы, что равно 20 метрам напора.
Если полученый результат 5,341 метров меньше входного напора, то результат нас удовлетворяет и диаметр трубы с внутренни диаметром 12мм подходит!
Если нет то необходимо увеличивать диаметр трубы.
Но имейти ввиду, если в расчет брать трубу, которая из подвала идет по стоякам к вам на пятый этаж, то результат возможно будет не удовлетворительным. А если у вас саседи будут отбирать поток воды, то и соответственно входной напор может уменьшится. Так что имейти ввиду про запас в два три раза уже хорошо. В нашем случае запас в четыре раза больше.
Давайте попробуем так ради эксперимента. У нас в трубе 10 метров в пути, имеются четыре угольника (колена). Это гидравлические сопротивления и они называются местными гидравлическими сопротивлениями. Для колена в 90 градусов имеется формула расчета:
h-потеря напора сдесь она измеряется в метрах. ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с2 |
h=ζ*(V 2 )/2*9,81=0,249 м.
Так как у нас 4 угольника, то полученый результат умножаем на 4 и получаем 0,996 м. Почти еще один метр.
Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.
D=100 мм = 0,1м L=376м Геометрическая высота=17м Отводов 21 шт Напор насоса= 0,5 МПа (50 метров водного столба) Максимальный расход=90м 3 /ч Температура воды 16°С. Труба стальная железная |
Найти максимальный расход = ?
Для решения необходимо знать график насосов: Зависимость расхода от напора.
В нашем случае будет такой график:
Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.
По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).
Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).
Поэтому решаем задачу ступенчато.
Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.
Находим скорость движения воды
Q=45 м 3 /ч = 0,0125 м 3 /сек.
V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с
Находим число рейнольдса
ν=1,16•10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.
Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.
Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.
У меня попадает на вторую область при условии
10•D/Δэ 0.25 =0,11•( 0,0001/0,1 + 68/137069) 0,25 =0,0216
Далее завершаем формулой:
h=λ•(L•V 2 )/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.
Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:
Теперь делаем оригинальный расчет при расходе равный 64м 3 /час
Q=64 м 3 /ч = 0,018 м 3 /сек.
V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с
λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/197414) 0,25 =0,021
h=λ•(L•V 2 )/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.
Отмечаем на графике:
Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).
Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.
Для проверки проверим:
Q=54 м 3 /ч = 0,015 м 3 /сек.
V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213
h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.
Итог: Мы попали на Нпот=14,89=15м.
А теперь посчитаем сопротивление на поворотах:
Формула по нахождению напора на местном гидравлическом сопротивление:
h-потеря напора здесь она измеряется в метрах. ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с2 |
ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.
Смотрел в разных книгах по местным сопротивлениям для поворота трубы и отводов. И приходил часто к расчетам, что один сильный резкий поворот равен коэффициенту единице. Резким поворотом считается, если радиус поворота по значению не превышает диаметр. Если радиус превышает диаметр в 2-3 раза, то значение коэффициента значительно уменьшается.
Скорость 1,91 м/с
h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м.
Это значение умножаем на количество отводов и получаем 0,18•21=3,78 м.
Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.
Давайте теперь решим целиком задачку с отводами.
При расходе 45 м 3 /час получили потерю напора по длине: 10,46 м. Смотри выше.
При этой скорости (2,29 м/с) находим сопротивление на поворотах:
h=ζ•(V 2 )/2•9,81=(1•2,29 2 )/(2•9,81)=0,27 м. умножаем на 21 = 5,67 м.
Складываем потери напора: 10,46+5,67=16,13м.
Отмечаем на графике:
Решаем тоже самое только для расхода в 55 м 3 /ч
Q=55 м 3 /ч = 0,015 м 3 /сек.
V = (4•0,015)/(3,14•0,1•0,1)=1,91 м/с
λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/164655) 0,25 =0,0213
h=λ•(L•V 2 )/(D•2•g)= 0,0213•(376•1,91•1,91)/(0,1•2•9,81)=14,89 м.
h=ζ•(V 2 )/2•9,81=(1•1,91 2 )/( 2•9,81)=0,18 м. умножаем на 21 = 3,78 м.
Складываем потери: 14,89+3,78=18,67 м
Рисуем на графике:
Ответ: Максимальный расход=52 м 3 /час. Без отводов Qmax=54 м 3 /час.
Чтобы в ручную не считать всю математику я приготовил специальную программу: